Soluţii corecte: Sorin Andrei-Popovici, Claudiu Drăgan, Camelia Muşetescu, Aurel Ionescu, Cristina Siminescu, Pit-Rada Ionel-Vasile, Viorel Manta, Sergiu Fintineru, Zoltan Szabo, Emil Claudiu Man, Bogdan Burlacu, Mihaela Marghescu, Ştefan Gaţachiu, Gina Granu.
Notez cu N anul in care va avea loc egalitatea ceruta care devine:
(N - 2001)*2 + (N - 2005) + (N - 2009) + (N - 2011) + (N - 2014) = N - 1946
5*N = 10 095
Deci N = 2019.
2. Viorel Manta:
Fie A anul in care varsta tatalui este egala cu suma varstelor celor 6 nepoti.
Notam cu x numarul de ani din 2001 (cand se nasc primii 2 nepoti) pana la anul A.
Atunci tatal va avea (2001-1946)+x ani si N1=N2=x
N3=x-4, N4=x-8, N5=x-10 si N6=x-13
(unde cu N1, N2..N6 notam nepoti)
Asadar trebuie sa avem in anul A
55+x= x+x+x-4+x-8+x-10+x-13
adica 55=5x-35 ==> 5x=90 ==> x = 18.
In concluzie in anul 2019 tatal va avea 73 de ani iar suma varstelor nepotilor va fi 73 (18+18+14+10+8+5).
3. Sorin Andrei-Popovici:
In 2019 deoarece in 2014 suma varstelor nepotilor este 43, varsta dumneavoastra 68, rezulta diferenta de 25 de ani. Suma varstelor creste cu 6 pe an, varsta dumneavoastra cu 1 => crestere de 5/an pt copii, rezultatul fiind 25/5=5